Self Classifying Reusable Components Generating Decision Trees from Test Cases

نویسندگان

  • Heinz Pozewaunig
  • Roland T. Mittermeir
چکیده

The paper presents an approach to describe the semantics of reusable software components by specifiably chosen input-output tuples. The initial data basis for such tuples are test cases. We discuss, how test cases can serve as descriptors for software components. Further, it is shown how an optimal search structure can be obtained from such tuples by means of supervised learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Component-based decision trees for classification

Typical data mining algorithms follow a so called “black-box” paradigm, where the logic is hidden from the user not to overburden him. We show that “white-box” algorithms constructed with reusable components design can have significant benefits for researchers, and end users as well. We developed a component-based algorithm design platform, and used it for “white-box” algorithm construction. Th...

متن کامل

Generating Production Rules from Decision Trees

Many inductive knowledge acquisition algorithms generate classifiers in the form of decision trees. This paper describes a technique for transforming such trees to small sets of production rules, a common formalism for expressing knowledge in expert systems. The method makes use of the training set of cases from which the decision tree was generated, first to generalize and assess the reliabili...

متن کامل

Reusable components in decision tree induction algorithms

We propose a generic decision tree framework that supports reusable components design. The proposed generic decision tree framework consists of several sub-problems which were recognized by analyzing well-known decision tree induction algorithms, namely ID3, C4.5, CART, CHAID, QUEST, GUIDE, CRUISE, and CTREE. We identified reusable components in these algorithms as well as in several of their p...

متن کامل

Explaining the Results of an Optimization-Based Decision Support System – A Machine Learning Approach

In this paper, we present work conducted in order to explain the results of a commercial software used for real-time decision support for the flow management of a combined wastewater network. This tool is deployed in many major cities and is used on a daily basis. We apply decision trees to build rules for classifying and interpreting the solutions of the optimization model. Our main goal is to...

متن کامل

Generating effective test suites for model transformations using classifying terms

Generating sample models for testing a model transformation is no easy task. This paper explores the use of classifying terms and stratified sampling for developing richer test cases for model transformations. Classifying terms are used to define the equivalence classes that characterize the relevant subgroups for the test cases. From each equivalence class of object models, several representat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007